Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Enhanced Tetracycline Adsorption Using KOH-Modified Biochar Derived from Waste Activated Sludge in Aqueous Solutions
 
  • Details
Options

Enhanced Tetracycline Adsorption Using KOH-Modified Biochar Derived from Waste Activated Sludge in Aqueous Solutions

Journal
Toxics
ISSN
2305-6304
Date Issued
2024-09-25
Author(s)
Jiazheng Ding
Jiahao Liang
Qinghong Wang
Xiang Tan
Institute of Science and Environment 
Wenyu Xie
Chunmao Chen
Changgang Li
Dehao Li
Jin Li
Xiaoqing Chen
DOI
10.3390/toxics12100691
Abstract
<jats:p>Antibiotic pollution poses a serious environmental concern worldwide, posing risks to ecosystems and human well-being. Transforming waste activated sludge into adsorbents for antibiotic removal aligns with the concept of utilizing waste to treat waste. However, the adsorption efficiency of these adsorbents is currently limited. This study identified KOH modification as the most effective method for enhancing tetracycline (TC) adsorption by sludge biochar through a comparative analysis of acid, alkali, and oxidant modifications. The adsorption characteristics of TC upon unmodified sludge biochar (BC) as well as KOH-modified sludge biochar (BC-KOH) were investigated in terms of equilibrium, kinetics, and thermodynamics. BC-KOH exhibited higher porosity, greater specific surface area, and increased abundance of oxygen-based functional groups compared to BC. The TC adsorption on BC-KOH conformed the Elovich and Langmuir models, with a maximum adsorption capacity of 243.3 mg/g at 298 K. The adsorption mechanisms included ion exchange, hydrogen bonding, pore filling, and electrostatic adsorption, as well as π-π interactions. Interference with TC adsorption on BC-KOH was observed with HCO3−, PO43−, Ca2+, and Mg2+, whereas Cl−, NO3−, and SO42− ions exhibited minimal impact on the adsorption process. Following three cycles of utilization, there was a slight 5.94% reduction in the equilibrium adsorption capacity, yet the adsorption capacity remained 4.5 times greater than that of unmodified sludge BC, underscoring its significant potential for practical applications. This research provided new insights to the production and application of sludge biochar for treating antibiotic-contaminated wastewater.</jats:p>
File(s)
No Thumbnail Available
Name

toxics-12-00691.pdf

Size

3.64 MB

Format

Adobe PDF

Checksum

(MD5):d6ef470ac39a742181f023c9b0c09891


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback