Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Stock market prediction using artificial intelligence: A systematic review of systematic reviews
 
  • Details
Options

Stock market prediction using artificial intelligence: A systematic review of systematic reviews

Journal
Social Sciences & Humanities Open
ISSN
2590-2911
Date Issued
2024-03-08
Author(s)
Chin Yang Lin
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
DOI
10.1016/j.ssaho.2024.100864
Abstract
There are many systematic reviews on predicting stock. However, each reveals a different portion of the hybrid AI analysis and stock prediction puzzle. The principal objective of this research was to systematically review the existing systematic reviews on Artificial Intelligence (AI) models applied to stock market prediction to provide valuable inputs for the development of strategies in stock market investments. Keywords that would fall under the broad headings of AI and stock prediction were looked up in Scopus and Web of Science databases. We screened 69 titles and read 43 systematic reviews, including more than 379 studies, before retaining 10 for the final dataset. This work revealed that support vector machines (SVM), long short-term memory (LSTM), and artificial neural networks (ANN) are the most popular AI methods for stock market prediction. In addition, the time series of historical closing stock prices are the most commonly used data source, and accuracy is the most employed performance metric of the predictive models. We also identified several research gaps and directions for future studies. Specifically, we indicate that future research could benefit from exploring different data sources and combinations, while we also suggest comparing different AI methods and techniques, as each may have specific advantages and applicable scenarios. Lastly, we recommend better evaluating different prediction indicators and standards to reflect prediction models’ actual value and impact.
Subjects

Machine learning

Deep learning

Support vector machin...

Long short-term memor...

Neural networks (NN)

File(s)
No Thumbnail Available
Name

1-s2.0-S2590291124000615-main.pdf

Type

main article

Size

1.48 MB

Format

Adobe PDF

Checksum

(MD5):62c7592818c5af10f8f604064b98e0fc


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback