Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Book Chapter
  4. Evaluation of ECG Non-linear Features in Time-Frequency Domain for the Discrimination of COVID-19 Severity Stages
 
  • Details
Options

Evaluation of ECG Non-linear Features in Time-Frequency Domain for the Discrimination of COVID-19 Severity Stages

Date Issued
2023
Author(s)
Ribeiro, Pedro
Pordeus, Daniel
Zacarias, Laila
Leite, Camila
Alves Neto, Manoel
Aires Peixoto Jr, Arnaldo
de Oliveira, Adriel
Paulo Madeiro, Joao
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Miguel Rodrigues, Pedro
Editor(s)
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Fong, Simon James
Abstract
In 2020, the World Health Organization declared the Coronavirus Disease 19 a global pandemic. While detecting COVID-19 is essential in controlling the disease, prognosis prediction is crucial in reducing disease complications and patient mortality. For that, standard protocols consider adopting medical imaging tools to analyze cases of pneumonia and complications. Nevertheless, some patients develop different symptoms and/or cannot be moved to a CT-Scan room. In other cases, the devices are not available. The adoption of ambulatory monitoring examinations, such as Electrocardiography (ECG), can be considered a viable tool to address the patient’s cardiovascular condition and to act as a predictor for future disease outcomes. In this investigation, ten non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) extracted from 2 ECG signals (collected from 2 different patient’s positions). Windows of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: (Low vs. Moderate, Low vs. Severe, Moderate vs. Severe) and 1 Multi-class comparison (All vs. All)). The results indicate that some statistically significant parameter distributions were found for all comparisons. (Low vs. Moderate—Approximate Entropy p-value = 0.0067 < 0.05, Low vs. Severe—Correlation Dimension p-value = 0.0087 < 0.05, Moderate vs. Severe—Correlation Dimension p-value = 0.0029 < 0.05, All vs. All—Correlation Dimension p-value = 0.0185 < 0.05. The non-linear analysis of the time-frequency representation of the ECG signal can be considered a promising tool for describing and distinguishing the COVID-19 severity activity along its different stages.
File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback