Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Book Chapter
  4. Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models
 
  • Details
Options

Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models

Date Issued
2022
Author(s)
Fong, Simon James
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Li, G.
Dey, Nilanjan
Crespo, Ruben G.
Herrera-Viedma, E.
Gois, Francisco Nauber Bernardo
Neto, Jose Xavier
Abstract
A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, was not originally designed for COVID19. We used the simple, commonly used SEIR model to retrospectively analyse the initial pandemic data from Singapore. Here, the SEIR model was combined with the actual published Singapore pandemic data, and the key parameters were determined by maximizing the nonlinear goodness of fit R2 and minimizing the root mean square error. These parameters served for the fast and directional convergence of the parameters of an improved model. To cover the quarantine and asymptomatic variables, the existing SEIR model was extended to an infectious disease model with a greater number of population compartments, and with parameter values that were tuned adaptively by solving the nonlinear dynamics equations over the available pandemic data, as well as referring to previous experience with SARS. The contribution presented in this paper is a new model called the adaptive SEAIRD model; it considers the new characteristics of COVID19 and is therefore applicable to a population including asymptomatic carriers. The predictive value is enhanced by tuning of the optimal parameters, whose values better reflect the current pandemic.
File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback