Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Characterization of the vocal behavior of the miniature and transparent fish model, <i>Danionella cerebrum</i>
 
  • Details
Options

Characterization of the vocal behavior of the miniature and transparent fish model, <i>Danionella cerebrum</i>

Journal
The Journal of the Acoustical Society of America
ISSN
0001-4966
Date Issued
2024-01-01
Author(s)
Vasconcelos, Raquel 
Institute of Science and Environment 
Marta Bolgan
André B. Matos
Sheila P. Van-Dunem
Jorge Penim
M. Clara P. Amorim
DOI
10.1121/10.0024346
Abstract
<jats:p>Danionella cerebrum has recently been proposed as a promising model to investigate the structure and function of the adult vertebrate brain, including the development of vocal–auditory neural pathways. This genetically tractable and transparent cypriniform is highly vocal, but limited information is available on its acoustic behavior and underlying biological function. Our main goal was to characterize the acoustic repertoire and diel variation in sound production of D. cerebrum, as well as to investigate the relationship between vocal behavior and reproduction. Sound recordings demonstrated high vocal activity, with sounds varying from short sequences of pulses known as “bursts” (comprising up to 15 pulses) to notably longer sounds, termed “long bursts”, which extended up to 349 pulses with over 2.7 s. Vocal activity peaked at midday and it was very low at night with only a few bursts. While the number of pulses was higher during the daytime, the interpulse interval was longer at night. In addition, calling time was positively associated with the number of viable eggs, suggesting that acoustic communication is important for reproduction. These preliminary findings reveal the potential of using D. cerebrum to investigate vocal plasticity and the implications for sexual selection and reproduction in a novel vertebrate model for neuroscience.</jats:p>
Subjects

Animals

Auditory Pathways

Brain

Fishes

Sound

Vocalization

Animal

File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback