Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Application of Multiple Deep Learning Architectures for Emotion Classification Based on Facial Expressions
 
  • Details
Options

Application of Multiple Deep Learning Architectures for Emotion Classification Based on Facial Expressions

Journal
Sensors
ISSN
1424-8220
Date Issued
2025-02-27
Author(s)
Cheng Qian
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Auzuir Ripardo de Alexandria
Simon James Fong
DOI
10.3390/s25051478
Abstract
<jats:p>Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This study presents a comprehensive evaluation of ten state-of-the-art deep learning models—VGG16, VGG19, ResNet50, ResNet101, DenseNet, GoogLeNet V1, MobileNet V1, EfficientNet V2, ShuffleNet V2, and RepVGG—on the task of facial expression recognition using the FER2013 dataset. Key performance metrics, including test accuracy, training time, and weight file size, were analyzed to assess the learning efficiency, generalization capabilities, and architectural innovations of each model. EfficientNet V2 and ResNet50 emerged as top performers, achieving high accuracy and stable convergence using compound scaling and residual connections, enabling them to capture complex emotional features with minimal overfitting. DenseNet, GoogLeNet V1, and RepVGG also demonstrated strong performance, leveraging dense connectivity, inception modules, and re-parameterization techniques, though they exhibited slower initial convergence. In contrast, lightweight models such as MobileNet V1 and ShuffleNet V2, while excelling in computational efficiency, faced limitations in accuracy, particularly in challenging emotion categories like “fear” and “disgust”. The results highlight the critical trade-offs between computational efficiency and predictive accuracy, emphasizing the importance of selecting appropriate architecture based on application-specific requirements. This research contributes to ongoing advancements in deep learning, particularly in domains such as facial expression recognition, where capturing subtle and complex patterns is essential for high-performance outcomes.</jats:p>
Subjects

facial expression rec...

deep learning

artificial intelligen...

model performance eva...

FER2013 dataset

File(s)
No Thumbnail Available
Name

sensors-25-01478.pdf

Type

main article

Size

4.84 MB

Format

Adobe PDF

Checksum

(MD5):d6b5b8e87d9a7910a457bd64a714dc96


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback