Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Book Chapter
  4. Forecasting COVID-19 Time Series Based on an Autoregressive Model
 
  • Details
Options

Forecasting COVID-19 Time Series Based on an Autoregressive Model

Date Issued
2020
Author(s)
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Gois, Francisco Nauber Bernardo
Xavier-Neto, Jose
Fong, Simon James
Abstract
When considering time-series forecasting, the application of autoregressive models is a popular and simple technique that is usually considered. In this chapter, we present the basic theoretical aspects and assumptions of the ARIMA—Autoregressive Integrated Moving Average model. It is considered for the prediction of the COVID-19 epidemiological data series of five different countries (China, United States, Brazil, Italy, and Singapore), each of them with specific curves, which are results of the virus reproduction itself but also of policies and government decisions during the pandemic spread. The discussion about the results is performed with the focus on the three evaluation criteria of the model:
Score, MAE, and MSE. Higher
Score was obtained when the sample time series was smoothly increasing or decreasing. The error metrics were higher when the prediction was performed for oscillating data series. This may indicate that the use of ARIMA models may be suitable as a prediction tool for the COVID-19 when the country is not facing severe oscillations in the number of infections.
File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback