Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Conference Paper
  4. Optimization of Energy Storage Systems with Renewable Energy Generation and Consumption Data
 
  • Details
Options

Optimization of Energy Storage Systems with Renewable Energy Generation and Consumption Data

Journal
2024 IEEE 7th Student Conference on Electric Machines and Systems (SCEMS)
Date Issued
2024-11-06
Author(s)
Edmilson Moreira Lima Filho
Aêdo Braga Silveira
Alexandre Marques Ferreira
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Josias Guimarães Batista
Glendo De Freitas Guimarães
Auzuir Ripardo De Alexandria
Joel José Puga Coelho Rodrigues
DOI
10.1109/SCEMS63294.2024.10756498
Abstract
This work provides a comprehensive systematic review of optimization techniques using artificial intelligence (AI) for energy storage systems within renewable energy setups. The primary goals are to evaluate the latest technologies employed in forecasting models for renewable energy generation, load forecasting, and energy storage systems, alongside their construction parameters and optimization methods. The review highlights the progress achieved, identifies current challenges, and explores future research directions. Despite the extensive application of machine learning (ML) and deep learning (DL) in renewable energy generation, consumption patterns, and storage optimization, few studies integrate these three aspects simultaneously, underscoring the significance of this work. The review encompasses studies from Web of Science, Scopus, and Science Direct up to December 2023, including works scheduled for publication in 2024. Each study related to renewable energy storage was individually analyzed to assess its objectives, methodology, and results. The findings reveal useful insights for developing AI models aimed at optimizing storage systems. However, critical areas need further exploration, such as real-time forecasting, long-term storage predictions, hybrid neural networks for demand-based generation forecasting, and the evaluation of various storage scales and battery technologies. The review also notes a significant gap in research on large-scale storage systems in Brazil and Latin America. In conclusion, the study emphasizes the need for continued research and the development of new algorithms to address existing limitations in the field.
Subjects

Deep learning

Renewable energy sour...

Costs

Smart buildings

Neural networks

Predictive models

Transformers

Real-time systems

Forecasting

Energy storage

File(s)
Loading...
Thumbnail Image
Name

Waiting for Repository Version.jpg

Size

113.46 KB

Format

JPEG

Checksum

(MD5):45228bea27122db72e82ca06d42d0a3e


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback