Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Book Chapter
  4. An Exploratory Comparison of Stock Price Prediction: Using Multiple Machine Learning Approaches based on Global Stock Indices
 
  • Details
Options

An Exploratory Comparison of Stock Price Prediction: Using Multiple Machine Learning Approaches based on Global Stock Indices

Journal
Palgrave Studies of Entrepreneurship and Social Challenges in Developing Economies
Entrepreneurship, Innovation, and Technology
Date Issued
2024-11-29
Author(s)
Chin Yang Lin
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
DOI
doi.org/10.1007/978-3-031-65314-8_14
Abstract
Predicting stock prices is difficult because of their multiple input variables, volatility, and unpredictable nature. To provide a suitable model for forecasting the global stock market, this study conducts an exploratory analysis comparing two models based on Artificial Intelligence: Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) Neural Networks. The work considers a publicly accessible dataset and uses feature engineering to extract time-series features. Stock price predictions are made using the SVM and LSTM algorithms. For this purpose, Accuracy (ACC) and Root Mean Squared Error (RMSE) are considered accuracy and performance measures. According to the results, LSTM with mean accuracy (ACC) = 0.9061 achieved better accuracy than SVM with mean accuracy (ACC) = 0.881. SVM with mean RMSE = 0.729 achieved better performance and the degree of fit to the data than LSTM with mean RMSE = 427.1. According to the results, the study demonstrates the effectiveness and applicability of machine learning methods for estimating the values of the global stock market and providing valuable models for researchers, analysts, and investors.
Subjects

Support Vector Machin...

Long Short-Term Memor...

File(s)
Loading...
Thumbnail Image
Name

Waiting for Repository Version.jpg

Size

113.46 KB

Format

JPEG

Checksum

(MD5):45228bea27122db72e82ca06d42d0a3e


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback