Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Noise-induced damage in the zebrafish inner ear endorgans: evidence for higher acoustic sensitivity of saccular and lagenar hair cells
 
  • Details
Options

Noise-induced damage in the zebrafish inner ear endorgans: evidence for higher acoustic sensitivity of saccular and lagenar hair cells

Journal
Journal of Experimental Biology
ISSN
0022-0949
Date Issued
2023-11-15
Author(s)
Ieng Hou Lau
Vasconcelos, Raquel 
Institute of Science and Environment 
DOI
10.1242/jeb.245992
Abstract
The three otolithic endorgans of the inner ear are known to be involved in sound detection in different teleost fishes, yet their relative roles for auditory vestibular functions within the same species remain uncertain. In zebrafish (Danio rerio), the saccule and utricle are thought to play key functions in encoding auditory and vestibular information, respectively, but the biological function of the lagena is not clear. We hypothesized that the zebrafish saccule serves as a primary auditory endorgan, making it more vulnerable to noise exposure, and that the lagena might have an auditory function given its connectivity to the saccule and the dominant vestibular function of the utricle. We compared the impact of acoustic trauma (continuous white noise at 168 dB for 24 h) between the sensory epithelia of the three otolithic endorgans. Noise treatment caused hair cell loss in both the saccule and lagena but not in the utricle. This effect was identified immediately after acoustic treatment and did not increase 24 h post-Trauma. Furthermore, hair cell loss was accompanied by a reduction in presynaptic activity measured based on ribeye b presence, but mainly in the saccule, supporting its main contribution for noise-induced hearing loss. Our findings support the hypothesis that the saccule plays a major role in sound detection and that the lagena is also acoustically affected, extending the species hearing dynamic range.
File(s)
No Thumbnail Available
Name

jeb245992.pdf

Size

4.38 MB

Format

Adobe PDF

Checksum

(MD5):9eb3b28c670135a95e1116648a42552a


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback