Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Local Equivalence of the Black–Scholes and Merton–Garman Equations
 
  • Details
Options

Local Equivalence of the Black–Scholes and Merton–Garman Equations

Date Issued
2025-03-15
Author(s)
Arraut, Ivan 
Faculty of Business and Law 
DOI
10.3390/axioms14030215
Abstract
It has been previously demonstrated that stochastic volatility emerges as the gauge field necessary to restore local symmetry under changes in stock prices in the Black–Scholes (BS) equation. When this occurs, a Merton–Garman-like equation emerges. From the perspective of manifolds, this means that the Black–Scholes and Merton–Garman (MG) equations can be considered locally equivalent. In this scenario, the MG Hamiltonian is a special case of a more general Hamiltonian, here referred to as the gauge Hamiltonian. We then show that the gauge character of volatility implies a specific functional relationship between stock prices and volatility. The connection between stock prices and volatility is a powerful tool for improving volatility estimations in the stock market, which is a key ingredient for investors to make good decisions. Finally, we define an extended version of the martingale condition, defined for the gauge Hamiltonian.
Subjects

Merton–Garman equatio...

Black–Scholes equatio...

gaugetheory

File(s)
No Thumbnail Available
Name

axioms-14-00215-v2.pdf

Type

main article

Size

502.92 KB

Format

Adobe PDF

Checksum

(MD5):a97e042b02f3f3bb6983913955db2528


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback