Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Evaluation of mathematical models for QRS feature extraction and QRS morphology classification in ECG signals
 
  • Details
Options

Evaluation of mathematical models for QRS feature extraction and QRS morphology classification in ECG signals

Date Issued
2020
Author(s)
do Vale Madeiro, Joao Paulo
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Han, Tao
Coury Pedrosa, Roberto
DOI
10.1016/j.measurement.2020.107580
Abstract
It is plausible to assume that the component waves in ECG signals constitute a unique human characteristic because morphology and amplitudes of recorded beats are governed by multiple individual factors. According to the best of our knowledge, the issue of automatically classifying different �identities� of QRS morphology has not been explored within the literature. This work proposes five alternative mathematical models for representing different QRS morphologies providing the extraction of a set of features related to QRS shape. The technique incorporates mechanisms of combining the mathematical functions Gaussian, Mexican-Hat and Rayleigh probability density function and also a mechanism for clipping the waveform of those functions. The searching for the optimal parameters which minimize the normalized RMS error between each mathematical model and a given QRS search window enables to find an optimal model. Such modeling behaves as a robust alternative for delineating heartbeats, classifying beat morphologies, detecting subtle and anomalous changes, compression of QRS complex windows among others. The validation process evaluates the ability of each model to represent different QRS morphology classes within 159 full ECG signal records from QT database and 584 QRS search windows from MIT-BIH Arrhythmia database. From the experimental results, we rank the winning rates for which each mathematical model best models and also discriminates the most predominant QRS morphologies Rs, rS, RS, qR, qRs, R, rR�s and QS. Furthermore, the average time errors computed for QRS onset and offset locations when using the corresponding winner mathematical models for delineation purposes were, respectively, 12.87�8.5_ms and 1.47�10.06_ms.
Subjects

Mathematical modeling...

ECG feature extractio...

Morphology classifica...

QRS complex delineati...

File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback