Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Conference Paper
  4. Analysis of deep learning algorithms for emotion classification based on facial expression recognition
 
  • Details
Options

Analysis of deep learning algorithms for emotion classification based on facial expression recognition

Journal
Proceedings of the 2024 8th International Conference on Big Data and Internet of Things
Date Issued
2024-09-14
Author(s)
Cheng Qian
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Simon James Fong
DOI
10.1145/3697355.3697382
Abstract
Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This paper presents an empirical study that evaluates four existing deep learning models—VGG16, DenseNet, ResNet50, and GoogLeNet—utilizing the Facial Expression Recognition 2013 (FER2013) dataset. The dataset contains seven distinct emotional expressions: angry, disgust, fear, happy, neutral, sad, and surprise. Each model underwent rigorous assessment based on metrics including test accuracy, training duration, and weight file size to test their effectiveness in FER tasks. ResNet50 emerged as the top performer with a test accuracy of 69.46%, leveraging its residual learning architecture to effectively address challenges inherent in training deep neural networks. Conversely, GoogLeNet exhibited the lowest test accuracy among the models, suggesting potential architectural constraints in FER applications. VGG16, while competitive in accuracy, demonstrated lengthier training times and a larger weight file size (512MB), highlighting the inherent balance between model complexity and computational efficiency.
File(s)
Loading...
Thumbnail Image
Name

Waiting for Repository Version.jpg

Size

113.46 KB

Format

JPEG

Checksum

(MD5):45228bea27122db72e82ca06d42d0a3e


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback