Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Book Chapter
  4. X-Ray Machine Learning Classification with VGG-16 for Feature Extraction
 
  • Details
Options

X-Ray Machine Learning Classification with VGG-16 for Feature Extraction

Date Issued
2023
Author(s)
dos Santos Silva, Bruno Riccelli
Cortez, Paulo César
da Silva Neto, Manuel Gonçalves
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Editor(s)
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Fong, Simon James
Abstract
The Covid-19 pandemic evidenced the need Computer Aided Diagnostic Systems to analyze medical images, such as CT and MRI scans and X-rays, to assist specialists in disease diagnosis. CAD systems have been shown to be effective at detecting COVID-19 in chest X-ray and CT images, with some studies reporting high levels of accuracy and sensitivity. Moreover, it can also detect some diseases in patients who may not have symptoms, preventing the spread of the virus. There are some types of CAD systems, such as Machine and Deep Learning-based and Transfer learning-based. This chapter proposes a pipeline for feature extraction and classification of Covid-19 in X-ray images using transfer learning for feature extraction with VGG-16 CNN and machine learning classifiers. Five classifiers were evaluated: Accuracy, Specificity, Sensitivity, Geometric mean, and Area under the curve. The SVM Classifier presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results, achieving 33.9% and 54.07%, respectively.
File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback