Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Conference Paper
  4. Exploring EEG Signal Features for Predicting Post Cardiac Arrest Prognosis
 
  • Details
Options

Exploring EEG Signal Features for Predicting Post Cardiac Arrest Prognosis

Date Issued
2023
Author(s)
Guilherme Cunha Santos, Antonio
Lobo Marques, Joao Alexandre 
Faculty of Business and Law 
Rigo Jr., Luis
Paulo Madeiro, Joao
DOI
10.22489/CinC.2023.312
Abstract
In the George B. Moody PhysioNet Challenge 2023 on ‘Predicting Neurological Recovery from Coma After Cardiac Arrest’, our team, UF_MDCC, employed machine learning techniques to predict patient prognosis based on electroencefalogram (EEG) signals. Our strategy was to extract features from the EEG signals, capturing both linear and non-linear characteristics from time and frequency domains. The chosen model was Random Forest, trained with various feature extraction strategies. Our team's performance on the test set at different time intervals are as follows: At 12 hours - Rank 10, Challenge Score 0.312; at 24 hours - Rank 24, Challenge Score 0.312; at 48 hours - Rank 28, Challenge Score 0.272; and at 72 hours - Rank 32, Challenge Score 0.272.
Subjects

EEG Signal Features

File(s)
No Thumbnail Available
Name

Exploring EEG Signal Features for Predicting Post Cardiac Arrest Prognosis.pdf

Size

280.87 KB

Format

Adobe PDF

Checksum

(MD5):b66846c9b54cbf45478ba7ff17d8bce5


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback