Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. A medical text classification approach with ZEN and capsule network
 
  • Details
Options

A medical text classification approach with ZEN and capsule network

Date Issued
2023
Author(s)
Liang, Shengbin 
Institute for Data Engineering and Science 
Sun, Fuqi
Sun, Haoran
Chen, Tingting
Du, George 
Institute for Data Engineering and Science 
DOI
10.1007/s11227-023-05612-6
Abstract
Text classification is an important topic in natural language processing, with the development of social network, many question-and-answer pairs regarding health-care and medicine flood social platforms. It is of great social value to mine and classify medical text and provide targeted medical services for patients. The existing algorithms of text classification can deal with simple semantic text, especially in the field of Chinese medical text, the text structure is complex and includes a large number of medical nomenclature and professional terms, which are difficult for patients to understand. We propose a Chinese medical text classification model using a BERT-based Chinese text encoder by N-gram representations (ZEN) and capsule network, which represent feature uses the ZEN model and extract the features by capsule network, we also design a N-gram medical dictionary to enhance medical text representation and feature extraction. The experimental results show that the precision, recall and F1-score of our model are improved by 10.25%, 11.13% and 12.29%, respectively, compared with the baseline models in average, which proves that our model has better performance.
Subjects

Capsule network

Medical text classifi...

Text mining

ZEN model

File(s)
No Thumbnail Available
Name

Waiting for Repository Version.pdf

Size

37.66 KB

Format

Adobe PDF

Checksum

(MD5):70439f9ac5a8bde2f366653765cefe3c


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback