Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Academic Research Output
  3. Journal Article
  4. Statistical Forecast Applied to Two Macao Air Monitoring Stations
 
  • Details
Options

Statistical Forecast Applied to Two Macao Air Monitoring Stations

Date Issued
2020
Author(s)
Lei, M.
Monjardino, Joana
Mendes, L.
Gonçalves, David 
Institute of Science and Environment 
Ferreira, Francisco
DOI
10.1088/1755-1315/489/1/012018
Abstract
The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on multiple regression (MR) analysis were developed successfully for Macao to predict the next day concentrations of PM10, PM2.5, and NO2. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.89 to 0.92) for all pollutants. The models utilized meteorological and air quality variables based on five years of historical data, from 2013 to 2017. The data from 2013 to 2016 were used to develop the statistical models and data from 2017 were used for validation purposes. A wide range of meteorological and air quality variables were identified, and only some were selected as significant dependent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-hour levels. The models were applied in forecasting the next day average daily concentrations for PM10, PM2.5, and NO2 for the air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.
File(s)
No Thumbnail Available
Name

Statistical Forecast Applied to Two Macao Air Monitoring Stations.pdf

Size

1.16 MB

Format

Adobe PDF

Checksum

(MD5):9a427606c7dd5e5ab95e6e91f5a1e470


  • YouTube
  • Instagram
  • Facebook


USJ Library

Estrada Marginal da Ilha Verde
14-17, Macau, China

E-mail:library@usj.edu.mo
Tel:+853 8592 5633

Quick Link

Direction & Parking
USJ website
Contact Us

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback